

Effect of fluorine substituents on catalytic functionalizations of alkyl halides with organostannanes

Rie Shimizu and Takamasa Fuchikami*

Sagami Chemical Research Center, 4-4-1 Nishi-Ohnuma, Sagamihara, Kanagawa 229-0012, Japan Received 12 April 2001; revised 13 July 2001; accepted 27 July 2001

Abstract—Introduction of fluorine atom(s) at the γ - and δ -positions of alkyl iodides increased the selectivities toward palladium-catalyzed cross-coupling reaction with organostannanes. A similar effect of fluorine substituents on the selectivities was also observed in the palladium-catalyzed carbonylative coupling reaction of alkyl iodides with phenyltributyltin under CO pressure. © 2001 Elsevier Science Ltd. All rights reserved.

Organofluorine compounds are well-known for displaying unique reactivities and selectivities in the transitionmetal catalyzed functionalization reactions. have previously reported example, we perfluoroalkyl-substituted alkyl iodides readily undergo carbonylation and double-carbonylation reactions in the presence of transition-metal catalysts, where these halides showed similar reactivities to phenyl or vinyl halides rather than alkyl halides.^{1,2} In these reactions, we have proposed that β-perfluoroalkyl-substituted alkylmetal species, generated by the oxidative addition of the halides to low valent transition-metal complexes, can be stabilized by the internal coordination of fluorine atom(s) to the metal center so that the insertion of carbon monoxide takes place more rapidly than the β-elimination of hydrido-metal species.³ If these organometallic intermediates are stable enough,4 it may be possible to develop new carbon-carbon bond forming reactions which have been considered difficult with non-fluorinated alkyl halides. In the course of these working hypotheses, we have recently found transitionmetal catalyzed functionalizations of β-perfluoroalkylsubstituted alkyl halides with Grignard reagents and organostannanes.^{5,6} Here, we wish to report that the introduction of fluorine atom(s) at the γ - and δ -positions of alkyl iodides⁷⁻⁹ increased the selectivities toward palladium-catalyzed cross-coupling and carbonylative coupling reactions with organostannanes.

First, we examined the palladium-catalyzed cross-coupling reaction of fluorine-substituted alkyl iodides with organostannanes (Table 1). When 1-iododecane (1a) was heated with (phenylethynyl)tributyltin (3.0 equiv.) in benzene at 120°C for 16 h in the presence of Pd(PPh₃)₄ (10 mol%), 1-phenyl-1-dodecyne (2a) was obtained in only 6% yield, along with 1-decene in 47% yield. Employing 4-fluoro-1-iododecane (1b) and 3fluoro-1-iododecane (1d) instead of 1-iododecane (1a) afforded the corresponding cross-coupling products, 6fluoro-1-phenyldodecyne (2b) and 5-fluoro-1-phenyldodecyne (2d), in 20 and 18% yields under similar conditions. The introduction of two fluorine atoms to the δ - and γ -positions of the iodide was more effective. Thus, 4,4-difluoro-1-iododecane (1c) and 3,3-difluoro-1iododecane (1e) reacted under the same conditions to give 6,6-difluoro-1-phenyldodecyne (2c) and 5,5difluoro-1-phenyldodecyne (2e) in 33 and 38% yields, respectively (Eq. (1)).

The more distinguished effect of fluorine substituents on the selectivities was observed in the palladium-catalyzed carbonylative coupling reaction of alkyl iodides with phenyltributyltin under CO pressure (Table 2). The treatment of 1-iododecane (1a) with phenyltributyltin (1.1 equiv.) in benzene at 120°C for 16 h in the presence of Pd(PPh₃)₄ (10 mol%) under CO pressure

0040-4039/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: \$0040-4039(01)01404-6

^{*} Corresponding author. Tel.: +81 42 766 7842; fax:+81 42 749 7631; e-mail: scrc1@sagami.or.jp

Table 1. Catalytic coupling reaction with alkyl iodides with (phenylethynyl)tributyltin^{a,b}

Entry	Iodoalkane		Yield of product (%)	Yield of alkene (%)
1		(1a)	6	47
2	F	(1b)	20	32
3	F F	(1c)	33	30
4	F	(1d)	18	12
5	F, F	(1e)	36	8

^a Yields were determined by GLC. Iodides were completely consumed under the reaction conditions, respectively.

(50 atm) afforded undecanophenone (3a) in 39% yield. The yield was not improved at all by using excess (1.7) equiv.) of the tin reagent in the case of the nonfluorinated halide (run 2). The selectivity toward the coupling reaction increased by the introduction of fluorine atom(s) to the δ -position of the iodide. Thus, 4-fluoro-1-iododecane (1b) and 4,4-difluoro-1-iododecane (1c) afforded the desired fluorinated ketones, 5-fluoroundecanophenone (3b) and 5,5-difluoroundecanophenone (3c), in 53 and 62% yields on using 1.7 equiv. of the tin reagent (runs 3 and 4). In the present carbonylative coupling reaction, the introduction of fluorine atom(s) to the γ -position of the iodide was found to be very effective. The treatment of 3-fluoro-1-iododecane (1d) and 3,3-difluoro-1-iododecane (1e) instead of 1a with 1.1 equiv. of the tin reagent under similar conditions gave the corresponding carbonylative products, 4fluoroundecanophenone (3d) and 4,4-difluoroundecanophenone (3e), in 52 and 65% yields, respectively (runs 5 and 7). In the reaction of 1d, the yield of the desired ketone (3d) reached 81% by using 1.7 equiv. of phenyltributyltin (run 6) (Eq. (2)).

We have examined the theoretical considerations using Gaussian 98 program.¹² The B3LYP DFT (Density Functional Theory) optimization of coordinately unsat-

urated 3-fluoropropyl palladium complexes, cis-FCH₂CH₂-PdI(CO), using LANL2DZ as a basis set gave two stable conformers 4A and 4B (Fig. 1). In the conformer 4A, the γ -fluorine atom of the 3-fluoropropyl group is located at the trans position to the iodide atom, in which the bond length between Pd and F is calculated to be 2.22 Å. ¹³ On the other hand, in the conformer 4B, β-hydrogen atom of 3-fluoropropyl group is situated at the trans position to the iodide, where the bond length between Pd and H is 2.66 A. This conformer 4B may be thought to be the intermediate to β -elimination of palladium hydride, which is calculated to be less stable than the conformer 4A by 8.60 millihartrees (5.40 kcal/mol). The transition structure calculation from these two comformers 4A and 4B using Opt = QST2 as a keyword easily met the stationary point. In the predicted transition structure 4TS, the palladium atom is weakly linked to both hydrogen and fluorine atoms (Pd-H=2.78 Å, Pd-F=3.66 Å), and the energy difference between the transition structure 4TS and the stable conformer 4A is calculated to be 12.5 millihartrees (7.87 kcal/mol). Similar calculations for cis-4-fluorobutyl-PdI(CO) derivatives also gave the two stable isomers 5A and 5B, and the transition structure **5TS**. In this case, the energy difference (5.15 millihartrees, 3.23 kcal/mol) between the transition structure

$$\begin{array}{c} \text{PhSnBu}_{3} \ \, (1.1\text{-}1.7 \ \text{equiv.}) \\ \text{CO} \ \, (50 \ \text{atm}) \\ \text{CO} \ \, (50 \ \text{atm}) \\ \text{cat.} \ \, \text{Pd} \ \, (10 \ \text{mol}\%) \\ \text{benzene, } 120^{\circ}\text{C, } 16 \ \text{h} \\ \end{array} \begin{array}{c} \text{a:} \ \, \text{R=C}_{10}\text{H}_{21}\text{-} \\ \text{b:} \ \, \text{R=C}_{6}\text{H}_{13}\text{-CHF-(CH}_{2})_{3}\text{-} \\ \text{c:} \ \, \text{R=C}_{6}\text{H}_{13}\text{-CF}_{2}\text{-(CH}_{2})_{3}\text{-} \\ \text{d:} \ \, \text{R=C}_{7}\text{H}_{15}\text{-CHF-(CH}_{2})_{2}\text{-} \\ \text{e:} \ \, \text{R=C}_{7}\text{H}_{15}\text{-CF}_{2}\text{-(CH}_{2})_{2}\text{-} \\ \end{array} \right. \end{array} \tag{2}$$

^b Typical procedure: see Ref. 10.

Table 2. Carbonylative coupling reaction with alkyl iodides with phenyltributyltin^{a,b}

Entry	Iodoalkane	PhSnBu ₃ (equiv.)	Conversion of 1 (%)	Yield of 3 (%)
1		1a) 1.1	74	39
2 3		1a) 1.7 1b) 1.7	96 100	38 53
4	·	1c) 1.7	100	62
5	F (I	(d) 1.1	88	52
6 7	(1 (1	1d) 1.7 1e) 1.1	91 89	81 65

^a Yields were determined by GLC.

^b Typical procedure: see Ref. 11.

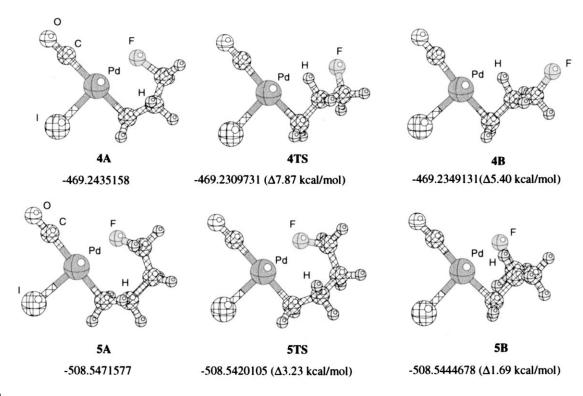


Figure 1.

5TS and the stable conformer **5A** is calculated to be much less than that between **4TS** and **4A** in 3-fluoropropyl derivatives.

In conclusion, the introduction of fluorine atom(s) at the γ - and δ -positions of alkyl iodides increased the

selectivities toward palladium-catalyzed functionalizations with organostannanes. It seems that these results support our working hypotheses that the oxidative addition of these fluorinated alkyl halides generates alkylmetal species, which can be stabilized by the internal coordination of fluorine atom(s) into

metal center to prevent from β -elimination of metal-hydride.

References

- 1. Urata, H.; Kosukegawa, O.; Ishii, Y.; Yugari, H.; Fuchikami, T. *Tetrahedron Lett.* **1989**, *30*, 4403–4406.
- Urata, H.; Ishii, Y.; Fuchikami, T. Tetrahedron Lett. 1989, 30, 4407–4410.
- 3. Urata, H.; Maekawa, H; Takahashi, S.; Fuchikami, T. *J. Org. Chem.* **1991**, *56*, 4320–4322.
- The increases of reactivities by intramolecular metal-fluorine interaction were reported. For example: (a) Karl, J.; Erker, G. *Chem. Ber.* 1997, 130, 1261–1267; (b) Yamazaki, T.; Ando, M.; Kitazume, T.; Kubota, T.; Omura, M. *Org. Lett.* 1999, 1, 905–908.
- Shimizu, R.; Yoneda, E.; Fuchikami, T. Tetrahedron Lett. 1996, 37, 5557–5560.
- Shimizu, R.; Fuchikami, T. Tetrahedron Lett. 1996, 37, 8405–8408.
- 7. Monofluoro iodides 1b and 1d were prepared by DAST-fluorination of the corresponding iodoalcohols, 1-iodo-4-decanol and 1-iodo-3-decanol, respectively.⁸ Difluoro-iododecanes 1c and 1e were similarly synthesized by treatment of DAST with the corresponding iodoketones in the presence of a catalytic amount of water in CH₂Cl₂ at rt for several days, respectively.⁹
- 8. Middleton, W. J. J. Org. Chem. 1975, 40, 574-578.
- 9. Middleton, W. J. US Patent 3,914,265.
- General procedure for coupling reaction (Table 1).
 (Phenylethynyl)tributyltin (0.75 mmol) was added to a mixture of 3,3-difluoro-1-iododecane (1e, 0.25 mmol),

- Pd(PPh₃)₄ (0.025 mmol; 10 mol%), and dry benzene (0.75 ml) in a Pyrex tube. The reaction mixture was stirred at 120°C for 16 h under Ar. The GLC analysis revealed that 5,5-difluoro-1-dodecyne (**2e**) was obtained in 38% yield.
- 11. General procedure for carbonylative coupling reaction (Table 2). Tributylphenyltin (0.43 mmol) was added to a mixture of 3-fluoro-1-iododecane (1d, 0.25 mmol), Pd(PPh₃)₄ (0.025 mmol; 10 mol%), and dry benzene (0.75 ml) in an autoclave (10 ml). The reaction mixture was stirred under CO pressure (50 atm) at 120°C for 16 h. The GLC analysis revealed that 4-fluoroundecanophenone (3d) was obtained in 81% yield in addition to 9% of unchanged 1d.
- 12. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, Jr., J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople J. A. Gaussian 98, Revision A.9, Gaussian, Inc., Pittsburgh PA, 1998.
- 13. The *trans* isomer, *trans*-FCH₂CH₂CH₂-PdI(CO), having a similar structure is calculated to be less stable than the *cis* isomer by 0.53 millihartrees.